
Compilers
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Grammar

© 2023 Arthur Hoskey. All
rights reserved.

Grammar

 Grammar - Describes how to form strings from a
language's alphabet that are valid according to the
language's syntax.

 A grammar does not describe the meaning of strings.

 This presentation describes context-free grammars.

 A context-free grammar is a set of rules that defines how
to form sentences.

 Taken from the following sources:
https://en.wikipedia.org/wiki/Formal_grammar

 Engineering a Compiler by Cooper and Torczon 2nd edition

© 2023 Arthur Hoskey. All
rights reserved.

https://en.wikipedia.org/wiki/Formal_grammar

Why Do We Need a Grammar?

 We can already use regular expressions and finite
automata to recognize strings so why bother with a
grammar?

 Regular expressions and finite automata are not powerful
enough to recognize programming languages
(programming languages are too complicated for them).

 We need a context-free grammar in order to recognize a
programming language.

© 2023 Arthur Hoskey. All
rights reserved.

Regular Expressions/Finite
Automata vs Context-free
Grammars

 Regular expressions and finite automata ONLY RECOGNIZE
regular languages.

 Context-free grammars can recognize regular languages as
well as other types of languages.

 So, regular expressions and finite automata only recognize
a subset of the languages that a context-free grammar can
recognize.

 If we wanted to, we could write a context-free grammar
that is equivalent to a given regular expression or finite
automata (the opposite is not true though).

© 2023 Arthur Hoskey. All
rights reserved.

Grammar Description

 A grammar G consists of four components.

 G = (N, T, P, S)
◦ N – Set of nonterminals (these are kind of like variables)

◦ T – Set of terminals (these are kind of like constants)

◦ P – Set of productions (rewrite rules)

◦ S – Start state (this is a member of N (the set of nonterminals))

© 2023 Arthur Hoskey. All
rights reserved.

Example Context-free Grammar

 The following grammar recognizes strings of only the
character a of any length.

 Here are strings from the language: a, aa, aaa, aaaa, ….

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a }

◦ P = {

 S → aS,

 S → a

 }

◦ S = { S }

© 2023 Arthur Hoskey. All
rights reserved.

Nonterminals (only S in this example)

Terminals (only a in this example)

Productions (2 productions in this example).

Only nonterminals are allowed on the left side of a

production in a context-free grammar.

Start symbol (must be a nonterminal)

Recognizing Strings

 To check if a string belongs to the language the grammar
recognizes you must apply productions.

 You begin with the start symbol and apply productions
from there.

 If you can derive the target string by applying productions,
then the string is in the language.

 For example, is the following string recognized by the
grammar: a

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a }

◦ P = {

 S → aS,

 S → a

 }

◦ S = { S }

© 2023 Arthur Hoskey. All
rights reserved.

Check next slide

for answer

String Derivation

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a }

◦ P = { S → aS,

 S → a }

◦ S = { S }

 Derive the string a.

 S => a

 Note: Different arrows should be used for production definition (→) and
string derivation (=>).

© 2023 Arthur Hoskey. All
rights reserved.

1. Start with S
2. Apply S→a. Replace the S on

the left side with a.

Success! The string a has been

derived using the grammar.

String Derivation

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a }

◦ P = { S → aS,

 S → a }

◦ S = { S }

 Derive the string aa.

© 2023 Arthur Hoskey. All
rights reserved.

Check next slide

for answer

String Derivation

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a }

◦ P = { S → aS,

 S → a }

◦ S = { S }

 Derive the string aa.

 S => aS

 => aa

© 2023 Arthur Hoskey. All
rights reserved.

1. Start with S
2. Apply S→aS. Replace the S on

the left side with aS.

3. Apply S→ a. Replace the S

from the line above with a.

Success! The string aa has been

derived using the grammar.

String Derivation

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a }

◦ P = { S → aS,

 S → a }

◦ S = { S }

 Derive the string aaa.

© 2023 Arthur Hoskey. All
rights reserved.

Check next slide

for answer

String Derivation

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a }

◦ P = { S → aS,

 S → a }

◦ S = { S }

 Derive the string aaa.

 S => aS

 => aaS

 => aaa

© 2023 Arthur Hoskey. All
rights reserved.

1. Start with S
2. Apply S→aS. Replace the S on

the left side with aS.

3. Apply S→aS. Replace the S

from the line above with aS.

4. Apply S→ a. Replace the S from

the line above with a.

Success! The string aaa has been

derived using the grammar.

String Derivation

 G = (N, T, P, S)
◦ N = { S }, T = { a, b }, S = { S }

◦ P = { S → aS,

 S → a,

 S → b }

 Derive the string ab.

© 2023 Arthur Hoskey. All
rights reserved.

Check next slide

for answer

String Derivation

 G = (N, T, P, S)
◦ N = { S }, T = { a, b }, S = { S }

◦ P = { S → aS,

 S → a,

 S → b }

 Derive the string ab.

 S => aS

 => ab

© 2023 Arthur Hoskey. All
rights reserved.

1. Start with S
2. Apply S→ aS. Replace the S on

the left side with aS.

3. Apply S→ b. Replace the S

from the line above with b.

Success! The string ab has been

derived using the grammar.

String Derivation

 G = (N, T, P, S)
◦ N = { S }, T = { a, b }, S = { S }

◦ P = { S → aS,

 S → a,

 S → b }

 Derive the string b.

© 2023 Arthur Hoskey. All
rights reserved.

String Derivation

 G = (N, T, P, S)
◦ N = { S }, T = { a, b }, S = { S }

◦ P = { S → aS,

 S → a,

 S → b }

 Derive the string b.

 S => b

© 2023 Arthur Hoskey. All
rights reserved.

1. Start with S
2. Apply S→b. Replace the S on

the left side with a.

Success! The string b has been

derived using the grammar.

String Derivation

 G = (N, T, P, S)
◦ N = { S }, T = { a, b }, S = { S }

◦ P = { S → aS,

 S → a,

 S → b }

 Derive the string bb.

© 2023 Arthur Hoskey. All
rights reserved.

Check next slide

for answer

String Derivation

 G = (N, T, P, S)
◦ N = { S }, T = { a, b }, S = { S }

◦ P = { S → aS,

 S → a,

 S → b }

 Derive the string bb.

 S => ???

 There is no production that starts with b on the right side
that also has a nonterminal.

 We need a nonterminal somewhere in the right side to
recognize strings that have more than one character.

© 2023 Arthur Hoskey. All
rights reserved.

1. Start with S
There is no way to recognize a

string that has more than one

character that starts with a b

UNSUCCESSFUL! The string bb

cannot be recognized by this

grammar.

String Derivation

 G = (N, T, P, S)
◦ N = { S }, T = { a, b }, S = { S }

◦ P = { S → aS,

 S → bS,

 S → a,

 S → b }

 Derive the string bb.

© 2023 Arthur Hoskey. All
rights reserved.

Different productions

are being used in this

grammar

String Derivation

 G = (N, T, P, S)
◦ N = { S }, T = { a, b }, S = { S }

◦ P = { S → aS,

 S → bS,

 S → a,

 S → b }

 Derive the string bb.

 S => bS

 => bb

© 2023 Arthur Hoskey. All
rights reserved.

1. Start with S
2. Apply S→ bS. Replace the S on

the left side with bS.

3. Apply S→ b. Replace the S

from the line above with b.

Success! The string bb has been

derived using the grammar.

String Derivation

 G = (N, T, P, S)
◦ N = { S }, T = { a, b }, S = { S }

◦ P = { S → aS,

 S → bS,

 S → a,

 S → b }

 Derive the string abb.

© 2023 Arthur Hoskey. All
rights reserved.

String Derivation

 G = (N, T, P, S)
◦ N = { S }, T = { a, b }, S = { S }

◦ P = { S → aS,

 S → bS,

 S → a,

 S → b }

 Derive the string abb.

 S => aS

 => abS

 => abb

© 2023 Arthur Hoskey. All
rights reserved.

1. Start with S
2. Apply S→ aS. Replace the S on

the left side with aS.

3. Apply S→ bS. Replace the S

from the line above with bS.

Success! The string abb has been

derived using the grammar.

4. Apply S→ b. Replace the S

from the line above with b.

Grammars with More Than One
Nonterminal

 Grammars can have more than one nonterminal.

 The start symbol can be any of the nonterminals.

 For example:

 G = (N, T, P, S)
◦ N = { E, S, V }

◦ T = { 0, 1, + }

◦ S = { E }

◦ P = { E → S,

 S → V + V,

 V → 0,

 V → 1 }

© 2023 Arthur Hoskey. All
rights reserved.

Start symbol

is E

There are three nonterminals

in this grammar

String Derivation

 G = (N, T, P, S)
◦ N = { E, S, V }, T = { 0, 1, + }, S = { E }

◦ P = { E → S,

 S → V + V,

 V → 0,

 V → 1 }

 Derive the string 0+1.

© 2023 Arthur Hoskey. All
rights reserved.

String Derivation

 G = (N, T, P, S)
◦ N = { E, S, V }, T = { 0, 1, + }, S = { E }

◦ P = { E → S,

 S → V + V,

 V → 0,

 V → 1 }

 Derive the string 0+1.

 E => S

 => V+V

 => 0+V

 => a+1

© 2023 Arthur Hoskey. All
rights reserved.

1. Start with E
2. Apply E→ S. Replace the E on

the left side with S.

3. Apply S→ V+V. Replace the S

from the line above with V+V.

Success! The string 0+1 has been

derived using the grammar.

4. Apply V→ 0. Replace the V

from the line above with a.

5. Apply V→ 1. Replace the V

from the line above with 1.

String Derivation

 G = (N, T, P, S)
◦ N = { E, S, T, V }, T = { 0, 1, +, * }, S = { E }

◦ P = { E → S,

 S → T + S,

 S → T,

 T → V * T,

 T → V,

 V → 0, V → 1 }

 Derive the string 0*1.

© 2023 Arthur Hoskey. All
rights reserved.

String Derivation

 G = (N, T, P, S)
◦ N = { E, S, T, V }, T = { 0, 1, +, * }, S = { E }

◦ P = { E → S,

 S → T + S,

 S → T,

 T → V * T,

 T → V,

 V → 0, V → 1 }

 Derive the string 0*1.

 E => S

 => T (apply S→T)

 => V*T (apply T→V*T)

 => 0*T (apply V→0)

 => 0*V (apply T→V)

 => 0*1 (apply V→1)

© 2023 Arthur Hoskey. All
rights reserved.

Success! The string 0*1 has been

derived using the grammar.

String Derivation

 G = (N, T, P, S)
◦ N = { E, S, T, V }, T = { 0, 1, +, * }, S = { E }

◦ P = { E → S,

 S → T + S,

 S → T,

 T → V * T,

 T → V,

 V → 0, V → 1 }

 Derive the string 0*1+1.

© 2023 Arthur Hoskey. All
rights reserved.

String Derivation

 G = (N, T, P, S)
◦ N = { E, S, T, V }, T = { 0, 1, +, * }, S = { E }

◦ P = { E → S,

 S → T + S,

 S → T,

 T → V * T,

 T → V,

 V → 0, V → 1 }

 Derive the string 0*1+1.

 E => S

 => T+S (apply S→T+S)

 => V*T+S (apply T→V)

 => 0*T+S (apply V→0)

 => 0*V+S (apply T→V)

 => 0*1+S (apply V→1)

 => 0*1+T (apply S→T)

 => 0*1+V (apply T→V)

 => 0*1+1 (apply V→1)

© 2023 Arthur Hoskey. All
rights reserved.

Success! The string 0*1+1 has

been derived using the grammar.

Context-free Grammar with Empty
Production

 The following grammar recognizes strings of only the
character a of any length.

 Here are strings from the language: a, aa, aaa, aaaa, ….

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a }

◦ P = {

 S →aS,

 S → ε

 }

◦ S = { S }

The production S→ ε is the empty production. It basically
goes to nothing. Applying this production eliminates the
nonterminal (S in this case).

© 2023 Arthur Hoskey. All
rights reserved.

Nonterminals (only S in this example)

Terminals (only a in this example)

Productions (2 productions in this example).

Only nonterminals are allowed on the left side of a

production in a context-free grammar.

Start symbol (must be a nonterminal)

Empty Production in String Derivation

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a }

◦ P = { S →aS,

 S → ε }

◦ S = { S }

 Derive the string a.

 S => aS

 => aε

 => a

 Note: Different arrows should be used for production definition (→) and
string derivation (=>).

© 2023 Arthur Hoskey. All
rights reserved.

1. Start with S
2. Apply S→aS. Replace the S on

the left side with aS.

3. Apply S→ ε. Replace the S

from the line above with ε.

ε is empty string so it disappears

Success! The string a has been

derived using the grammar.

String Derivation

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a }

◦ P = { S →aS,

 S → ε }

◦ S = { S }

 Derive the string aa.

© 2023 Arthur Hoskey. All
rights reserved.

String Derivation

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a }

◦ P = { S →aS,

 S → ε }

◦ S = { S }

 Derive the string aa.

 S => aS

 => aaS

 => aaε

 => aa

© 2023 Arthur Hoskey. All
rights reserved.

1. Start with S 2. Apply S→aS. Replace the S on

the left side with aS.

4. Apply S→ ε. Replace the S

from the line above with ε.

ε is empty string so it disappears

3. Apply S→aS. Replace the S

from the line above with aS.

Success! The string a has been

derived using the grammar.

Example Grammar

 The following grammar defines strings that have a's followed by
b's where there are the same number of a's and b's.

 anbn for some n>=0.

 Here are some strings from the language: ab, aabb, aaabbb,
aaaabbbb, and so on.

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a, b }

◦ P = { S → aSb, S → ε }

◦ S = { S }

 This language is NOT regular! There is no finite automata or
regular expression that can recognize it. Note: The regular
expression a*b* will not work because it allows strings that
contain different numbers of a's and b's.

© 2023 Arthur Hoskey. All
rights reserved.

String Derivation Showing
Productions

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a, b }

◦ P = { S → aSb, S → ε }

◦ S = { S }

 Derive the string aabb.

© 2023 Arthur Hoskey. All
rights reserved.

String Derivation Showing
Productions

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a, b }

◦ P = { S → aSb, S → ε }

◦ S = { S }

 Derive the string aabb.

 S => aSb

 => aaSbb

 => aaεbb

 => aabb

© 2023 Arthur Hoskey. All
rights reserved.

1. Start with S 2. Apply S→aSb. Replace the S

on the left side with aSb.

3. Apply S→aSb. Replace the

S from the line above with aSb

4. Apply S→ ε. Replace the S

from the line above with ε.

ε is empty string so it disappears

String Derivation Tree

 You can also derive a string by creating a string derivation
tree (next slide).

 The root of the tree is the start symbol. You create levels in
the tree by applying productions.

 Derive the string aabb using a string derivation tree.

© 2023 Arthur Hoskey. All
rights reserved.

String Derivation Tree

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a, b }

◦ P = { S → aSb, S → ε }

◦ S = { S }

 Derive the string aabb.

 Start with the start symbol and apply productions.

© 2023 Arthur Hoskey. All
rights reserved.

S

a S b

a S b

ε

S

a S b

a S b

S

a S b

S

1. Start with S
2. Apply

S→aSb
3. Apply

S→aSb
4. Apply

S→ ε

The leaf nodes in the tree correspond

to the string that we derived. The

derived string can be constructed from

the tree by visiting leaf nodes going

from left to right (see next slide).

The tree grows in a

downward direction as

we apply productions

String Derivation Tree

 G = (N, T, P, S)
◦ N = { S }

◦ T = { a, b }

◦ P = { S → aSb, S → ε }

◦ S = { S }

 Derive the string aabb.

© 2023 Arthur Hoskey. All
rights reserved.

S

a S b

a S b

ε

This a is the first

letter in the string

This a is the second

letter in the string

(this a is to the right

of the other a in the

tree)

This b is the forth

letter in the string

This b is the third letter in

the string (this b is to the left

of the other b in the tree)

ε is the empty string

Visit leaf nodes from left

to right to see the string

that was recognized

Leftmost vs Rightmost Derivations

 Leftmost Derivation - Always expand the leftmost
nonterminal in the production.

 Rightmost Derivation - Always expand the rightmost
nonterminal in the production.

© 2023 Arthur Hoskey. All
rights reserved.

Leftmost Derivation Example

Leftmost Derivation Example

 G = (N, T, P, S)
◦ N = { S }

◦ T = { 1, a, + }

◦ P = { S→S+S, S→1, S→a }

◦ S = { S }

 Do leftmost derivation for the string:1+1+a

© 2023 Arthur Hoskey. All
rights reserved.

Leftmost Derivation Example

Leftmost Derivation Example

 G = (N, T, P, S)

◦ N = { S }

◦ T = { 1, a, + }

◦ P = { S→S+S, S→1, S→a }

◦ S = { S }

 Do a leftmost derivation for the string:1+1+a

S => S+S

 => S+S+S

 => 1+S+S

 => 1+1+S

 => 1+1+a

© 2023 Arthur Hoskey. All
rights reserved.

A leftmost derivation means

we should always expand the

leftmost nonterminal symbol

Rightmost Derivation Example

Rightmost Derivation Example

 G = (N, T, P, S)
◦ N = { S }

◦ T = { 1, a, + }

◦ P = { S→S+S, S→1, S→a }

◦ S = { S }

 Do rightmost derivation for the string:1+1+a

© 2023 Arthur Hoskey. All
rights reserved.

Rightmost Derivation Example

Rightmost Derivation Example

 G = (N, T, P, S)

◦ N = { S }

◦ T = { 1, a, + }

◦ P = { S→S+S, S→1, S→a }

◦ S = { S }

 Do a leftmost derivation for the string:1+1+a

S => S+S

 => S+S+S

 => S+S+a

 => S+1+a

 => 1+1+a

© 2023 Arthur Hoskey. All
rights reserved.

A rightmost derivation means

we should always expand the

rightmost nonterminal symbol

Ambiguous Grammar

 Ambiguous Grammar – If one of the following is true
then the grammar is ambiguous:
◦ There is more than one leftmost derivation of a string OR

◦ There is more than one rightmost derivation of a string.

© 2023 Arthur Hoskey. All
rights reserved.

Backus Naur Form

 Grammars can be described in slightly different formats.

 Format used in all previous slides was:
◦ Nonterminals start with a capital letter.

◦ Use → for productions.

◦ P = { S → aS,

◦ S → a }

 Backus-Naur Form (BNF)
◦ Surround nonterminals with < >.

◦ Surround terminals with " ".

◦ Use ::= instead of → in productions.

◦ If the same nonterminal left side is used for multiple productions, you
can put all the right side on one line and separate them with |.

◦ P = {

◦ <s> ::= "a" <s> | "a" }

 Note: Some descriptions of BNF use ' ' or underline or italic
for terminals instead.

© 2023 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Compilers
	Slide 2: Today’s Lecture
	Slide 3: Grammar
	Slide 4: Why Do We Need a Grammar?
	Slide 5: Regular Expressions/Finite Automata vs Context-free Grammars
	Slide 6: Grammar Description
	Slide 7: Example Context-free Grammar
	Slide 8: Recognizing Strings
	Slide 9: String Derivation
	Slide 10: String Derivation
	Slide 11: String Derivation
	Slide 12: String Derivation
	Slide 13: String Derivation
	Slide 14: String Derivation
	Slide 15: String Derivation
	Slide 16: String Derivation
	Slide 17: String Derivation
	Slide 18: String Derivation
	Slide 19: String Derivation
	Slide 20: String Derivation
	Slide 21: String Derivation
	Slide 22: String Derivation
	Slide 23: String Derivation
	Slide 24: Grammars with More Than One Nonterminal
	Slide 25: String Derivation
	Slide 26: String Derivation
	Slide 27: String Derivation
	Slide 28: String Derivation
	Slide 29: String Derivation
	Slide 30: String Derivation
	Slide 31: Context-free Grammar with Empty Production
	Slide 32: Empty Production in String Derivation
	Slide 33: String Derivation
	Slide 34: String Derivation
	Slide 35: Example Grammar
	Slide 36: String Derivation Showing Productions
	Slide 37: String Derivation Showing Productions
	Slide 38: String Derivation Tree
	Slide 39: String Derivation Tree
	Slide 40: String Derivation Tree
	Slide 41: Leftmost vs Rightmost Derivations
	Slide 42: Leftmost Derivation Example
	Slide 43: Leftmost Derivation Example
	Slide 44: Rightmost Derivation Example
	Slide 45: Rightmost Derivation Example
	Slide 46: Ambiguous Grammar
	Slide 47: Backus Naur Form
	Slide 48: End of Slides

